Empirical and Molecular Formulas

Percent Composition

- The percentage by mass of any element in a compound can be found by dividing the mass of he element by the mass of the compound and multiplying by 100
$\xlongequal{\text { mass of element }} \times 100=$ percent by mass
mass of compound
- If we know the chemical formula of the compound we can calculate the percentage composition by using the molar mass
- The percentage composition will always be the same no matter how large the sample is
- We can then assume that we have 1 mole of the substance

Example

- Determine the percent composition of Hydrogen and Oxygen in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.
- Determine molar masses
$-\mathrm{H}_{2} \mathrm{O}=2(1.01)+16=18.02 \mathrm{~g}$
$-\mathrm{H}_{2}=2(1.01)=2.02 \mathrm{~g}$
$-\mathrm{O}=16 \mathrm{~g}$
- Now find the percentages

$$
\begin{aligned}
& \frac{2.02 \mathrm{~g} \mathrm{H}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times 100=11.2 \% \mathrm{H} \\
& \frac{16 \mathrm{~g} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times 100=88.8 \% \mathrm{O}
\end{aligned}
$$

Empirical Formula

- If we know the identities of the elements in a compound and the percent composition of those elements then we can determine the formula for the compound
- The empirical formula is the formula with the smallest whole number ratio of the elements
- The empirical formula may or may not be the same as the actual molecular formula

Example 1

- The percentage composition of an oxide of sulfur is $40.04 \% \mathrm{~S}$ and $59.95 \% \mathrm{O}$.
- Assuming that we have 100 g of the compound we can calculate the number of moles of S and O

$$
\begin{aligned}
& \frac{40.05 \mathrm{~g}}{32.07 \mathrm{~g} / \mathrm{mol}}=1.249 \mathrm{~mol} \mathrm{~S} \\
& \frac{59.95 \mathrm{~g}}{16 \mathrm{~g} / \mathrm{mol}}=3.747 \mathrm{molO}
\end{aligned}
$$

- Now find the lowest whole number ratio

$$
\begin{aligned}
& \frac{1.249}{1.249}=1 \mathrm{molS} \\
& \frac{3.747}{1.249}=3 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

- This gives us an empirical formula of...

$$
\mathrm{SO}_{3}
$$

Example 2

- Experimental analysis determined that a compound contained 7.30 g of sodium (Na), 5.08 g of sulfur (S), and 7.62 g of oxygen (O).
- Find the number of moles of each

$$
\begin{aligned}
& \frac{7.30 \mathrm{~g}}{23 \mathrm{~g} / \mathrm{mol}}=0.317 \mathrm{~mol} \mathrm{Na} \\
& \frac{5.08 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=0.159 \mathrm{molS} \\
& \frac{7.62 \mathrm{~g}}{16 \mathrm{~g} / \mathrm{mol}}=0.476 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

- Now find the lowest ratio

$$
\begin{aligned}
& \frac{0.317}{0.159}=2 \mathrm{~mol} \mathrm{Na} \\
& \frac{0.159}{0.159}=1 \mathrm{molS} \\
& \frac{0.476}{0.159}=3 \mathrm{molO}
\end{aligned}
$$

- This gives us an empirical formula of...
$\mathrm{Na}_{2} \mathrm{SO}_{3}$

Molecular Formula

- Two (or more) different substances can have the same percentage composition and thus the same empirical formula
- However, these substances can have entirely different properties
- In other words, they are completely different compounds
- For example, both benzene and acetylene have an empirical formula of CH
- The molecular formula specifies the actual number of atoms of each element in one molecule or formula unit of the substance
- To determine the molecular formula for a substance we must experimentally determine its molar mass
- We can then find a ratio telling us how many times larger the molecular formula is than the empirical formula

Example 1

- Benzene has an empirical formula of CH
- Molar mass of $\mathrm{CH}=13.02 \mathrm{~g}$
- The experimentally determined molar mass of benzene is 78.12 g

$$
\frac{78.12 \mathrm{~g}}{13.02 \mathrm{~g}}=6
$$

- The molecular formula should be 6 times as large as the empirical formula...
$\mathrm{C}_{6} \mathrm{H}_{6}$

Example 2

- Acetylene has an empirical formula of CH - Molar mass of $\mathrm{CH}=13.02 \mathrm{~g}$
- The experimentally determined molar mass of acetylene is 26.04 g

$$
\frac{26.04 \mathrm{~g}}{13.02 \mathrm{~g}}=2
$$

- The molecular formula should be twice as large as the empirical formula...
$\mathrm{C}_{2} \mathrm{H}_{2}$

